An introduction to biodegradable materials for tissue engineering applications.

نویسندگان

  • D W Hutmacher
  • J C Goh
  • S H Teoh
چکیده

Tissue generation by autogenous cell transplantation is one of the most promising treatment concepts being developed as it eliminates problems of donor site scarcity, immune rejection and pathogen transfer. Cultured cells are seeded onto a three-dimensional biocompatible scaffold that will slowly degrade and resorb as the soft and hard structures grow and assimilate in vitro and/or in vivo. The 3-D scaffold provides the necessary template for cells to proliferate and maintain their differentiated state. Ultimately, it defines the overall shape of the tissue-engineered transplant. The aim of this review is to describe and discuss the scaffold materials of natural and synthetic origin that are of specific interest to tissue engineers. This review is based on previous publications and our own experience in the use of biomaterials of natural and synthetic origin for tissue engineering applications. Biodegradable polymers which have been used for tissue engineering applications are mainly based on clinically established medical devices and implants. In the group of macromolecules of natural origin collagen, alginate, agarose, hyaluronic acid derivatives, chitosan, and fibrin glue have been used as scaffolds. Man-made polymers such as polyglycolide (PGA), polylactides (PLLA, PDLA), poly(caprolactone) (PCL), and poly(dioxanone) (PDS) have been studied as matrix material to guide the differentiation and proliferation of cells into the targeted functional premature and/or mature tissue. Appropriate selection of scaffold material with respect to the targeted tissue is essential. Today, biomaterials of choice remain to be those approved by the US Food and Drug Administration. In spite of that, novel biomaterials should be developed specifically designed for tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic biodegradable elastomers for drug delivery and tissue engineering*

Synthetic biodegradable elastomers are an emerging class of materials with many potential clinical applications including drug delivery and tissue engineering. Biodegradable elastomers offer advantages of structure diversity, tunable properties, and a wide range of processing capabilities. This review highlights some recent developments in various aspects of biodegradable materials synthesis, c...

متن کامل

Overview on Vascular Tissue Engineering: Progress and Challenges

Today, vascular diseases such as atherosclerosis are one of the leading causes of death in the world and the prevalence of it in older societies is rising. The current treatments for repair of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or artificial devices, or the use of metabolic products. Although these methods are commonly used, they did not g...

متن کامل

Biodegradable Elastomeric Polymers and MEMS in Tissue Engineering

Within the past decade, researchers in the field of tissue engineering have recognized the need for newmaterials with soft and elastic properties. As a result, many groups have focused on the synthesis, characterization, and application of materials with a wide range of biodegradable and elastomeric properties.1 The combination of these polymers with Micro–Electro–Mechanical Systems (MEMS) tech...

متن کامل

Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering

Background: This study addressed the development of biodegradable and biocompatible scaffolds with enhanced biomechanical characteristics. The biocompatibility and the cationic nature of chitosan (CTS) make it more effective as a bone grafting material. Methods: The hydroxyapatite nanoparticles (nHA) were synthesized by hydrothermal method, and bioglass (nBG) (50% SiO2-45% CaO-5% P2O5) was synt...

متن کامل

Preparation of Biodegradable Low Density Polyethylene by Starch – Urea Composition for Agricultural Applications

It has been proven that polyolefins specially low density polyethylene (LDPE), are resistant against degradation and microorganism attacks; Thus, one of the most important properties of industrial plastics, is their environmental biodegradability. Since plastics are being widely used in agriculture, horticulture and packaging, meeting this requirement becomes increasingly dificult (speciall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the Academy of Medicine, Singapore

دوره 30 2  شماره 

صفحات  -

تاریخ انتشار 2001